Search results for " microdialysis"

showing 6 items of 6 documents

Role of serotonin in central dopamine dysfunction

2010

The interaction between serotonin (5-HT) and dopamine (DA)-containing neurons in the brain is a research topic that has raised the interest of many scientists working in the field of neuroscience since the first demonstration of the presence of monoamine-containing neurons in the mid 1960. The bulk of neuroanatomical data available clearly indicate that DA-containing neurons in the brain receive a prominent innervation from serotonin (5-hydroxytryptamine, 5-HT) originating in the raphe nuclei of the brainstem. Compelling electrophysiological and neurochemical data show that 5-HT can exert complex effects on the activity of midbrain DA neurons mediated by its various receptor subtypes. The m…

Mesocorticolimbic DA systemNigrostriatal DA systemReceptor Serotonin 5-HTParkinson's diseaseBrain microdialysisAntidepressantDopaminergic functionAntidepressantsSettore BIO/09 - Fisiologia5-HT receptorAntipsychoticParkinson diseaseMicrodialysinervous systemSingle cell recordingDrug addictionAntidepressants;Antipsychotics;Dopaminergic function;Drug addiction;5-HT receptors;Mesocorticolimbic DA system;Microdialysis;Nigrostriatal DA system;Parkinson disease;Single cell recordingAntipsychotic drugs
researchProduct

In vivo release of non-neuronal acetylcholine from human skin by dermal microdialysis: Effects of sunlight, UV-A and tactile stimulus

2007

Non-neuronal acetylcholine (ACh) is expressed in epithelial, endothelial and immune cells. For example, the in vivo release of ACh from the human skin pretreated with botulinum toxin has recently been demonstrated. In the present experiments the effects of light (sunlight and solar radiation by a commercial UV-A applier) and of a tactile stimulus on the release of non-neuronal ACh were investigated. Release of ACh from the proximal and distal shin, i.e. anterior tibial region, was measured by dermal microdialysis in 20 min samples over a time period of at least 140 min. Control experiments were performed in a dark room throughout. In some experiments volunteers were exposed to sunshine (80-…

AdultMaleMicrodialysisTime FactorsInjections IntradermalUltraviolet RaysMicrodialysisHuman skinStimulus (physiology)General Biochemistry Genetics and Molecular BiologyIn vivoPhysical StimulationmedicineHumansGeneral Pharmacology Toxicology and PharmaceuticsSkinNeuronsSunlightChemistryGeneral MedicineAnatomyAcetylcholineNon neuronal acetylcholineDermal microdialysisSunlightBiophysicsFemaleAcetylcholinemedicine.drugLife Sciences
researchProduct

Impact of serotonin 2C receptor null mutation on physiology and behavior associated with nigrostriatal dopamine pathway function.

2009

The impact of serotonergic neurotransmission on brain dopaminergic pathways has substantial relevance to many neuropsychiatric disorders. A particularly prominent role has been ascribed to the inhibitory effects of serotonin 2C receptor (5-HT2CR) activation on physiology and behavior mediated by the mesolimbic dopaminergic pathway, particularly in the terminal region of the nucleus accumbens. The influence of this receptor subtype on functions mediated by the nigrostriatal dopaminergic pathway is less clear. Here we report that a null mutation eliminating expression of 5-HT2CRs produces marked alterations in the activity and functional output of this pathway. 5-HT2CR mutant mice displayed i…

medicine.medical_specialtySerotoninDopamineDopamine AgentsPhysiologySubstantia nigraStriatumBiologySettore BIO/09 - FisiologiaPiperazinesArticleMiceDopamine receptor D1Dopamine Uptake InhibitorsDopamineDopamine receptor D2Internal medicineNeural PathwaysmedicineReceptor Serotonin 5-HT2CAnimalsNeuronsBehavior AnimalPars compactaGeneral Neuroscience5-HT2CR substantia nigra pars compacta dorsal striatum dopamine extracellular recording in vivo patch clamp recording microdialysis Locomotor activity Stereotypic behaviorDopaminergicNeurobehavioral disordersBenzazepinesGroomingCorpus StriatumElectrophysiologyMice Inbred C57BLSubstantia NigraAmphetamineEndocrinologymedicine.anatomical_structureDopaminergic pathwaysDopamine AgonistsMutationAutoradiographyStereotyped BehaviorNeuroscienceLocomotionmedicine.drugThe Journal of neuroscience : the official journal of the Society for Neuroscience
researchProduct

From the Golgi-Cajal mapping to the transmitter-based characterization of the neuronal networks leading to two modes of brain communication: Wiring a…

2007

After Golgi-Cajal mapped neural circuits, the discovery and mapping of the central monoamine neurons opened up for a new understanding of interneuronal communication by indicating that another form of communication exists. For instance, it was found that dopamine may be released as a prolactin inhibitory factor from the median eminence, indicating an alternative mode of dopamine communication in the brain. Subsequently, the analysis of the locus coeruleus noradrenaline neurons demonstrated a novel type of lower brainstem neuron that monosynaptically and globally innervated the entire CNS. Furthermore, the ascending raphe serotonin neuron systems were found to globally innervate the forebrai…

DopamineTortuosityBrain functionWiring transmissionSynaptic TransmissionDiffusionDual probe microdialysisMicrofluorimetrychemistry.chemical_compoundCatecholaminesPressure gradientsVolume transmissionHistofluorescenceLocus coeruleusExtracellular spaceNeurological and mental disordersNeurotransmitterNeuronsNeurotransmitter AgentsGeneral NeuroscienceBrain5-HydroxytryptamineAmygdalamedicine.anatomical_structure5-Hydroxytryptamine; Amygdala; Brain function; Brain uncoupling protein-2; Catecholamines; CA turnover; Clearance; Diffusion; Dopamine; Dorsal raphe; Dual probe microdialysis; Extracellular space; Extrasynaptic receptors; Histofluorescence; Local circuits; Locus coeruleus; Mapping of monoamine neurons; Microdensitometry; Microfluorimetry; Neurological and mental disorders; Noradrenaline; Nucleus accumbens; Pressure gradients; Receptor mosaics; Receptor–receptor interactions; Substantia nigra; Thermal gradients; Tortuosity; Transmitter–receptor mismatches; Volume fraction; Volume transmission; Wiring transmissionClearanceNucleus accumbensCA turnoverLocal circuitsReceptor–receptor interactionsSilver StainingMapping of monoamine neuronsModels NeurologicalNeurotransmissionBiologySerotonergicSubstantia nigramedicineBiological neural networkAnimalsHumansThermal gradientsTransmitter–receptor mismatchesVolume fractionExtrasynaptic receptorsMonoamine neurotransmitterchemistryReceptor mosaicsForebrainNoradrenalineLocus coeruleusBrain uncoupling protein-2Neurology (clinical)NeuronNerve NetMicrodensitometry5-Hydroxytryptamine Amygdala Brain function Brain uncoupling protein-2 Catecholamines CA turnover Clearance DiffusionNeuroscienceDorsal raphe
researchProduct

Aspirin protects striatal dopaminergic neurons from neurotoxin-induced degeneration: an in vivo microdialysis study.

2006

The effect of aspirin on dopaminergic neuronal damage induced by in vivo infusion of 1-methyl-4-phenylpiridinium iodide (MPP(+)) and 6-hydroxydopamine (6-OHDA) was studied in rats, using microdialysis. Rat striata were perfused with 1 mM MPP(+) or 6-OHDA for 10 min, causing peak levels of dopamine (DA) in the dialytic fluid, after 40 min. After 24 h, 1 mM MPP(+) was perfused again for 10 min and DA levels measured in the dialytic fluid, as an index of neuronal cell integrity. Pretreatment with Aspidol (lysine acetylsalicylate), 180 mg/kg i.p., 1 h before MPP(+) or 6-OHDA perfusion, did not modify DA extracellular output, on day 1, but restored MPP(+)-induced DA release on day 2, indicating …

MaleMicrodialysisTyrosine 3-MonooxygenaseDopamineMicrodialysisNeurotoxinsPharmacologyNeuroprotectionSettore BIO/09 - FisiologiaRats Sprague-Dawleychemistry.chemical_compoundIn vivoHydroxybenzoatesNeurotoxinAnimalsDrug InteractionsMolecular BiologyChromatography High Pressure LiquidNeuronsAnalysis of VarianceAspirinGeneral NeuroscienceMPTPDopaminergicImmunohistochemistryCorpus StriatumRatsNeuroprotective Agentsnervous systemchemistryAnesthesiaNerve DegenerationNeurology (clinical)Aspirin in vivo microdialysisPerfusionOxidopamineDevelopmental Biology
researchProduct

Lorcaserin bidirectionally regulates dopaminergic function site-dependently and disrupts dopamine brain area correlations in rats

2020

Abstract Lorcaserin, which is a selective agonist of serotonin2C receptors (5-HT2CRs), is a new FDA-approved anti-obesity drug that has also shown therapeutic promise in other brain disorders, such as addiction and epilepsy. The modulation of dopaminergic function might be critical in the therapeutic effect of lorcaserin, but its exact effect is unknown. Here, we studied the effect of the peripheral administration of lorcaserin on the ventral tegmental area (VTA), the substantia nigra pars compacta (SNc) dopaminergic neural activity, dopamine (DA) dialysis levels in the nucleus accumbens and striatum and on DA tissue levels in 29 different rat brain regions. Lorcaserin (5–640 μg/kg, i.v.) m…

0301 basic medicineMalemedicine.medical_specialtySerotoninDopamineSubstantia nigraStriatumNucleus accumbensSettore BIO/09 - FisiologiaLorcaserinIntracerebral microdialysisRats Sprague-DawleyDose-Response Relationship03 medical and health sciencesCellular and Molecular Neuroscience0302 clinical medicineSingle cell extracellular recordingsRewardDopamineInternal medicineReceptor Serotonin 5-HT2CmedicineAnimals5-HT2CObesityPharmacologyDose-Response Relationship DrugPars compactaChemistryDopaminergic NeuronsDopaminergicBrainNeurochemistryBenzazepinesSerotonin2C receptorRatsVentral tegmental area030104 developmental biologyEndocrinologymedicine.anatomical_structurenervous systemSprague-DawleyDrugIntracerebral microdialysis; Neurochemistry; Obesity; Reward; Serotonin2C receptor; Single cell extracellular recordings; Animals; Benzazepines; Brain; Dopamine; Dopaminergic Neurons; Dose-Response Relationship Drug; Male; Rats; Rats Sprague-Dawley; Receptor Serotonin 5-HT2C; Serotonin 5-HT2 Receptor AgonistsIntracerebral microdialysi030217 neurology & neurosurgerySerotonin 5-HT2 Receptor Agonistsmedicine.drugReceptor
researchProduct